资源类型

期刊论文 1432

会议视频 17

年份

2024 1

2023 109

2022 122

2021 117

2020 109

2019 73

2018 70

2017 68

2016 61

2015 67

2014 57

2013 49

2012 57

2011 49

2010 62

2009 59

2008 59

2007 58

2006 35

2005 32

展开 ︾

关键词

数学模型 13

数值模拟 11

力学性能 9

模型试验 9

模型 7

COVID-19 4

不确定性 4

神经网络 4

GM(1 3

绿色化工 3

计算机模拟 3

1)模型 2

ANSYS 2

DX桩 2

D区 2

Preissmann格式 2

SARS 2

TRIZ 2

Weibull分布 2

展开 ︾

检索范围:

排序: 展示方式:

A time−space porosity computational model for concrete under sulfate attack

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0985-7

摘要: The deterioration of the microscopic pore structure of concrete under external sulfate attack (ESA) is a primary cause of degradation. Nevertheless, little effort has been invested in exploring the temporal and spatial development of the porosity of concrete under ESA. This study proposes a mechanical–chemical model to simulate the spatiotemporal distribution of the porosity. A relationship between the corrosion damage and amount of ettringite is proposed based on the theory of volume expansion. In addition, the expansion strain at the macro-scale is obtained using a stress analysis model of composite concentric sphere elements and the micromechanical mean-field approach. Finally, considering the influence of corrosion damage and cement hydration on the diffusion of sulfate ions, the expansion deformation and porosity space−time distribution are obtained using the finite difference method. The results demonstrate that the expansion strains calculated using the suggested model agree well with previously reported experimental results. Moreover, the tricalcium aluminate concentration, initial elastic modulus of cement paste, corrosion damage, and continuous hydration of cement significantly affect concrete under ESA. The proposed model can forecast and assess the porosity of concrete covers and provide a credible approach for determining the residual life of concrete structures under ESA.

关键词: expansion deformation     porosity     internal expansion stress     external sulfate attack     mechanical–chemical coupling model    

Microdamage study of granite under thermomechanical coupling based on the particle flow code

《结构与土木工程前沿(英文)》   页码 1413-1427 doi: 10.1007/s11709-023-0953-2

摘要: The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes. The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering. In this study, an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation. A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings. Good agreement between the numerical results and experimental data are obtained, particularly in terms of the compression, tension, and elastic responses of granite. With this improved model, the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.

关键词: thermomechanical coupling effect     granite     improved linear parallel bond model     thermal property     particle flow code    

Effect of land-use management systems on coupled physical and mechanical, chemical and biological soil

Rainer HORN, Winfried E. H. BLUM

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 243-245 doi: 10.15302/J-FASE-2020334

Simulation of steel beam under ceiling jet based on a wind–fire–structure coupling model

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 78-98 doi: 10.1007/s11709-022-0936-8

摘要: For localized fires, it is necessary to consider the thermal and mechanical responses of building elements subject to uneven heating under the influence of wind. In this paper, the thermomechanical phenomena experienced by a ceiling jet and I-beam in a structural fire were simulated. Instead of applying the concept of adiabatic surface temperature (AST) to achieve fluid–structure coupling, this paper proposes a new computational fluid dynamics–finite element method numerical simulation that combines wind, fire, thermal, and structural analyses. First, to analyze the velocity and temperature distributions, the results of the numerical model and experiment were compared in windless conditions, showing good agreement. Vortices were found in the local area formed by the upper and lower flanges of the I-beam and the web, generating a local high-temperature zone and enhancing the heat transfer of convection. In an incoming-flow scenario, the flame was blown askew significantly; the wall temperature was bimodally distributed in the axial direction. The first temperature peak was mainly caused by radiative heat transfer, while the second resulted from convective heat transfer. In terms of mechanical response, the yield strength degradation in the highest-temperature region in windless conditions was found to be significant, thus explaining the stress distribution of steel beams in the fire field. The mechanical response of the overall elements considering the incoming flows was essentially elastic.

关键词: CFD–FEM coupling     steel beam     wind     ceiling jet     numerical heat transfer    

Modification of the activated sludge model for chemical dosage

Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 694-701 doi: 10.1007/s11783-014-0732-3

摘要: Full-scale experiments have been carried out to adapt the activated sludge model ASM2d to include the influence of metal dosage (Fe and Al ) for phosphorus removal. Phosphorus removal rates, nitrification rates, as well as pH and sludge settling performance, were evaluated as functions of the metal dosages. Furthermore, models relating certain parameters to the dosage of chemicals have been derived. Corresponding parameters in the ASM2d and the secondary settler models, included in the Benchmark Simulation Model No 1 (BSM1), have been modified to take the metal influence into consideration. Based on the effluent limits and penalty policy of China, an equivalent evaluation method was derived for the total cost assessment. A large number of 300-day steady-state and 14-day open-loop dynamic simulations were performed to demonstrate the difference in behavior between the original and the modified BSM1. The results show that 1) both in low and high mole concentrations, Fe addition results in a higher phosphorus removal rate than Al ; 2) the sludge settling velocity will increase due to the metal addition; 3) the respiration rate of the activated sludge is decreased more by the dosage of Al than Fe ; 4) the inhibition of Al on the nitrification rate is stronger than that of Fe ; 5) the total operating cost will reach the minimum point for smaller dosages of Fe , but always increase with Al addition.

关键词: chemical precipitation     benchmark simulation model     phosphorus removal     respiratory rate     sludge settling     activated sludge model    

冬小麦产量的水肥耦合模型

翟丙年,李生秀

《中国工程科学》 2002年 第4卷 第9期   页码 69-74

摘要:

采用五因素五水平二次通用旋转组合设计方案(1/2实施),在盆栽条件下,不同水分状况氮素对冬小麦产量的影响。通过建立回归模型及对其进行解析和寻优分析,得出如下结论:各试验因素对冬小麦籽粒产量影响的大小顺序为土壤含水量>越冬期施氮>拔节期施氮>灌浆期施氮>苗期施氮。施氮关键时期为越冬期、拔节期;苗期施氮和土壤含水量及越冬期施氮和土壤含水量交互效应显著,其中越冬期施氮和土壤含水量比苗期施氮和土壤含水量交互作用更为显著。

关键词: 冬小麦     氮素     土壤含水量     水肥耦合     数学模型    

Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting

Yang SONG, Chen ZHU, Waseem RAZA, Dongsheng WANG, Qiwei HUANG, Shiwei GUO, Ning LING, Qirong SHEN

《农业科学与工程前沿(英文)》 2019年 第6卷 第2期   页码 206-206 doi: 10.15302/J-FASE-2018234

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 391-401 doi: 10.1007/s11709-013-0225-7

摘要: The responses of cement mortar specimens of different dimensions under compression and tension were calculated based on the discrete element method with the modified-rigid-body-spring concrete model, in which the mechanical parameters derived from macro-scale material tests were applied directly to the mortar elements. By comparing the calculated results with those predicted by the Carpinteri and Weibull size effects laws, a series of formulas to convert the macro-scale mechanical parameters of mortar and interface to those at the meso-scale were proposed through a fitting analysis. Based on the proposed formulas, numerical simulation of axial compressive and tensile failure processes of concrete and cement mortar materials, respectively were conducted. The calculated results were a good match with the test results.

关键词: concrete     meso-mechanical model     discrete element method     size effect     mechanical parameter    

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 337-353 doi: 10.1007/s11709-014-0081-0

摘要: A mechanical model recently developed for the shear strength of slender reinforced concrete beams with and without shear reinforcement is presented and extended to elements with uniformly distributed loads, specially focusing on practical design and assessment in this paper. The shear strength is considered to be the sum of the shear transferred by the concrete compression chord, along the crack, due to residual tensile and frictional stresses, by the stirrups and, if they exist, by the longitudinal reinforcement. Based on the principles of structural mechanics simple expressions have been derived separately for each shear transfer action and for their interaction at ultimate limit state. The predictions of the model have been compared to those obtained by using the EC2, MC2010 and ACI 318-08 provisions and they fit very well the available experimental results from the recently published ACI-DAfStb databases of shear tests on slender reinforced concrete beams with and without stirrups. Finally, a detailed application example has been presented, obtaining each contributing component to the shear strength and the assumed shape and position of the critical crack.

关键词: shear strength     mechanical model     reinforced concrete     design     assessment     shear tests    

静电自组装制备复合磨粒及其对铜的抛光特性研究

黄亦申,许雪峰,姚春燕,胡建德,彭伟

《中国工程科学》 2012年 第14卷 第10期   页码 82-89

摘要:

研究苯代三聚氰胺甲醛(BGF)微球与阳离子型聚电解质聚二烯丙基二甲基氯化铵(PDADMAC)、阴离子型聚电解质聚4-苯乙烯璜酸钠(PSS)之间的吸附特性,利用静电自组装技术改变和控制BGF微球的荷电特性,制备出不同形式的PEi BGF/SiO2复合磨粒,以Zeta电位、透射电子显微镜(TEM)和热重分析(TG)等手段对复合磨粒进行了表征,并利用这些复合磨粒制备了铜片抛光用的复合磨粒抛光液。抛光试验表明,吸附在聚合物微球表面和游离于抛光液中的SiO2磨粒在抛光中均起到材料去除作用。传统单一SiO2磨粒抛光液的铜材料去除率为264 nm/min,PE0 BGF/SiO2混合磨粒抛光液的铜材料去除率为348 nm/min,PE3 BGF/SiO2复合磨粒抛光液的铜材料去除率为476 nm/min。经上述3种抛光液抛光后的铜表面,在5 μm×5 μm范围内,表面粗糙度Ra从0.166 μm分别降至3.7 nm、2.6 nm和1.5 nm,峰谷值Rpv分别小于20 nm、14 nm和10 nm,复合磨粒抛光液对铜片有良好的抛光性能。

关键词: 化学机械抛光     抛光液     复合磨粒     聚电解质     铜片    

Studying the stress-suction coupling in soils using an oedometer equipped with a high capacity tensiometer

Trung Tinh LE, Yu-Jun CUI, Juan Jorge MU?OZ, Pierre DELAGE, Anh Minh TANG, Xiang-Ling LI

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 160-170 doi: 10.1007/s11709-011-0106-x

摘要: In the context of research into deep nuclear waste disposal, various works have concerned the hydromechanical behavior of Boom clay, a stiff plastic clay extracted in the SCK-CEN Underground Research Laboratory near the Mol City (Belgium), at a depth of 223 m. Due to some amount of smectite minerals in the clay fraction, Boom clay exhibits swelling properties when hydrated under low stresses. To investigate some aspects of the hydromechanical behavior of Boom clay, oedometer compression tests were carried out on samples of Boom clay close to saturation and submitted to an initial suction. During oedometer compression, the changes in suction with increased vertical stress are monitored by means of a high capacity tensiometer installed at the bottom of the sample. Some aspects related to hydromechanical couplings are examined through the investigation of the changes in suction during oedometer compression, a somewhat delicate and poorly documented experimental approach. A comparison is also made with a completely different soil sample under suction, i.e. a statically compacted unsaturated low plasticity silt. Some technical difficulties typical of this new experimental approach are first described in detail so as to optimize the interpretation of the data obtained. The experiment allows the determination of the point at which suction is changed to positive pressure during compression. Below this point, the ratio between the vertical stress and the change in suction are determined. Above this point, the data show that positive pore pressures are dissipated in a common way. The suction/stress behavior during unloading is also described and discussed. Finally, an interpretation in terms of microstructure effects is provided for both samples. The experimental approach initiated here seems to provide interesting further application to better understand hydromechanical couplings in natural soils in relation with suction increase during stress release.

关键词: Oedometer     tensiometer     swelling     physicochemical and mechanical effects     stress/suction coupling     soil plasticity    

An operating state estimation model for integrated energy systems based on distributed solution

Dengji ZHOU, Shixi MA, Dawen HUANG, Huisheng ZHANG, Shilie WENG

《能源前沿(英文)》 2020年 第14卷 第4期   页码 801-816 doi: 10.1007/s11708-020-0687-y

摘要: In view of the disadvantages of the traditional energy supply systems, such as separate planning, separate design, independent operating mode, and the increasingly prominent nonlinear coupling between various sub-systems, the production, transmission, storage and consumption of multiple energy sources are coordinated and optimized by the integrated energy system, which improves energy and infrastructure utilization, promotes renewable energy consumption, and ensures reliability of energy supply. In this paper, the mathematical model of the electricity-gas interconnected integrated energy system and its state estimation method are studied. First, considering the nonlinearity between measurement equations and state variables, a performance simulation model is proposed. Then, the state consistency equations and constraints of the coupling nodes for multiple energy sub-systems are established, and constraints are relaxed into the objective function to decouple the integrated energy system. Finally, a distributed state estimation framework is formed by combining the synchronous alternating direction multiplier method to achieve an efficient estimation of the state of the integrated energy system. A simulation model of an electricity-gas interconnected integrated energy system verifies the efficiency and accuracy of the state estimation method proposed in this paper. The results show that the average relative errors of voltage amplitude and node pressure estimated by the proposed distributed state estimation method are only 0.0132% and 0.0864%, much lower than the estimation error by using the Lagrangian relaxation method. Besides, compared with the centralized estimation method, the proposed distributed method saves 5.42 s of computation time. The proposed method is more accurate and efficient in energy allocation and utilization.

关键词: integrated energy system     state estimation     electricity-gas coupling energy system     nonlinear coupling     distributed solution    

Finite element modeling of thermo-active diaphragm walls

Yi RUI, Mei YIN

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 646-663 doi: 10.1007/s11709-020-0584-9

摘要: There are two major challenges faced by modern society: energy security, and lowering carbon dioxide gas emissions. Thermo-active diaphragm walls have a large potential to remedy one of these problems, since they are a renewable energy technology that uses underground infrastructure as a heat exchange medium. However, extensive research is required to determine the effects of cyclic heating and cooling on their geotechnical and structural performance. In this paper, a series of detailed finite element analyses are carried out to capture the fully coupled thermo-hydro-mechanical response of the ground and diaphragm wall. It is demonstrated that the thermal operation of the diaphragm wall causes changes in soil temperature, thermal expansion/shrinkage of pore water, and total stress applied on the diaphragm wall. These, in turn, cause displacements of the diaphragm wall and variations of the bending moments. However, these effects on the performance of diaphragm wall are not significant. The thermally induced bending strain is mainly governed by the temperature differential and uneven thermal expansion/shrinkage across the wall.

关键词: thermo-active diaphragm wall     finite element analysis     thermo-hydro-mechanical coupling     ground source heat pump    

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1726-1734 doi: 10.1007/s11705-022-2188-5

摘要: Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas, in which oxygen transfer is achieved by a redox material. Although lots of efforts have been made to develop high-performance redox materials, a few studies have focused on the redox kinetics. In this work, the kinetics of SrFeO3−δ–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor. During the methane reduction, combustion occurs before the partial oxidation and there exists a transition between them. The weight loss due to combustion increases, but the transition region becomes less inconspicuous as the reduction temperature increased. The weight loss associated with the partial oxidation is much larger than that with combustion. The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n = 3 (A3 model) with an activation energy of 59.8 kJ∙mol‒1. The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law. The partial oxidation is half order with respect to methane pressure. The proposed rate law could well predict the reduction kinetics; thus, it may be used to design and/or analyze a chemical looping reforming reactor.

关键词: chemical looping reforming     SrFeO3−δ/CaO·MnO nanocomposite     reduction kinetics     Avrami–Erofeyev model     pressure-dependent term    

Polysulfone and zirconia composite separators for alkaline water electrolysis

Li XU, Wei LI, Yan YOU, Shaoxing ZHANG, Yingchun ZHAO

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 154-161 doi: 10.1007/s11705-013-1331-8

摘要: The novel composite separators composed of polysulfone and zirconia were prepared by phase inversion precipitation technique. This technique allows pre-evaporation time and extraction temperature to be varied in order to obtain optimal performances of the separators. In order to evaluate practical applicability of those composite separators, a small-scale electrolysis experimental apparatus was used to investigate the changes of cell voltage, gas purity and separator stability. The results revealed a decreased cell voltage compared to the conventional asbestos separators, and the gas purity and separator stability met the requirements for industrial use.

关键词: phase inversion     separator     alkaline water electrolysis     mechanical and chemical stability    

标题 作者 时间 类型 操作

A time−space porosity computational model for concrete under sulfate attack

期刊论文

Microdamage study of granite under thermomechanical coupling based on the particle flow code

期刊论文

Effect of land-use management systems on coupled physical and mechanical, chemical and biological soil

Rainer HORN, Winfried E. H. BLUM

期刊论文

Simulation of steel beam under ceiling jet based on a wind–fire–structure coupling model

期刊论文

Modification of the activated sludge model for chemical dosage

Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON

期刊论文

冬小麦产量的水肥耦合模型

翟丙年,李生秀

期刊论文

Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting

Yang SONG, Chen ZHU, Waseem RAZA, Dongsheng WANG, Qiwei HUANG, Shiwei GUO, Ning LING, Qirong SHEN

期刊论文

Determination of mechanical parameters for elements in meso-mechanical models of concrete

Xianglin GU, Junyu JIA, Zhuolin WANG, Li HONG, Feng LIN

期刊论文

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

期刊论文

静电自组装制备复合磨粒及其对铜的抛光特性研究

黄亦申,许雪峰,姚春燕,胡建德,彭伟

期刊论文

Studying the stress-suction coupling in soils using an oedometer equipped with a high capacity tensiometer

Trung Tinh LE, Yu-Jun CUI, Juan Jorge MU?OZ, Pierre DELAGE, Anh Minh TANG, Xiang-Ling LI

期刊论文

An operating state estimation model for integrated energy systems based on distributed solution

Dengji ZHOU, Shixi MA, Dawen HUANG, Huisheng ZHANG, Shilie WENG

期刊论文

Finite element modeling of thermo-active diaphragm walls

Yi RUI, Mei YIN

期刊论文

Reduction kinetics of SrFeO/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial

期刊论文

Polysulfone and zirconia composite separators for alkaline water electrolysis

Li XU, Wei LI, Yan YOU, Shaoxing ZHANG, Yingchun ZHAO

期刊论文